Nilkantha Secondary School

Nilkantha Municipality-3, Dhading Second Term Examination, 2079

Class: XI (Science)

Time: 3 hrs.

Subject: C. Mathematics (0071)

F.M.: 75

Attempt all questions. Group-A [11×1=11]

Rewrite the correct option in your answer sheet.

1. If $\begin{pmatrix} 0 & x+3 \\ 7 & 0 \end{pmatrix}$ is a Skew-symmetric matrix then x is equal to c. -10

2. The quadratic equation $ax^2 + bx + c = 0$ has real and equal roots if a. $b^2 < 4ac$ b. $b^2 - 4ac = 0$ c. $b^2 + 4ac < 0$ d. $b^2 - 4ac > 0$

3. The value of $\sqrt{-25}.\sqrt{9}$ is

a. 15 b. -15 c. -15i, 4. The value of $\lim_{x \to \infty} \frac{2x^2}{3x^2 + 2}$ is a. $\frac{2}{3}$ b. $\frac{3}{2}$ c. $\frac{0}{0}$

d. doesn't exist

5. The value of $\lim_{x\to 0} \frac{e^{3x}-1}{\sin 2x}$ is

b. $\frac{3}{2}$ c. 1

 $\lim_{x \to 1^+} f(x) \text{ for the function } f(x) = \begin{cases} x^2 - 2 & \text{for } x > 1 \\ x & \text{for } x < 1 \end{cases}$

7. The second derivative of the function $f(x) = x^2 + \ln x$ is

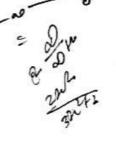
a. $2 - \frac{1}{x^2}$, b. $2x + \frac{1}{x}$ c. $2 - \frac{1}{x}$ d. $2 + \log x$

8. Which of the following is not critical point of the function $f(x) = x + \frac{1}{x}$

 $\mathbf{a} \cdot \mathbf{x} = 1$ c. x = 0

9. The derivative of
$$\sec 2x$$
 at $x = \frac{\pi}{8}$ is

a. $-\sqrt{2}$
b. $-2\sqrt{2}$
c. $2\sqrt{2}$
d. $\sqrt{2}$
10. The value of $\int 5^{3} dx$ is


a. $\frac{\log 5'}{5^{3}} + c$
b. $\frac{5^{x}}{\log 5^{x}} + c$
c. $\frac{5^{x}}{\log 5} + c$
d. None

11. The value of $\int \sec^{2} x e^{\tan x + 7} dx$ is

- 11. The value of $\int \sec^2 x e^{\tan x+7} dx$ is

- 12. a. Prove that: $\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$ b. Show that:
 - b. Show that the roots of the equation
- $x^2 4abx + (a^2 + 2b^2)^2 = 0$ are imaginary. 13. a. If one root of the equation $ax^2 + bx + c = 0$ be four times the
 - other, show that $4b^2 = 25ac$. Find the value of i^{-47} .
- 14. a. If $\frac{1-ix}{1+ix} = a-ib$, prove that $a^2+b^2=1$.
 - Find the square roots of 7-24t.
- 15. Evaluate:

 - lim 1-cos px grx → o 1 - cosqx
- 16. a. Discuss
 - $f(x) = \begin{cases} \frac{x^2 7x}{x 7} & \text{for } x \neq 7 \\ \frac{x 7}{5} & \text{for } x = 7 \end{cases} \text{ at } x = 7$
 - b. Evaluate: $\lim_{x \to \infty} e^{-x}$

of function

- 17. a. Find the derivative of $\frac{1}{2x+3}$ from first principle.
 - b. Find $\frac{dy}{dx}$ when $y = \cos^{-1} x^3$.
- 18. a. If $xy = \log(x + y)$, find $\frac{dy}{dx}$.
 - b. Find the intervals in which the function $f(x) = 3x^2 6x + 5$ is increasing or decreasing.
- 19. Evaluate:

a.
$$\int \frac{1}{\sqrt{1+2x}-\sqrt{2x-3}} dx$$

b.
$$\int \frac{x^2 + 5}{x + 2} dx$$

Group-C [3×8=24]

- 20. a. If z and w are two complex numbers, prove that $|z-w| \le |z| + |w|$
- equations Determine the value of p so that each pair of equations may have one root common.

$$4x^2 + px - 12 = 0$$
 and $4x^2 + 3px - 4 = 0$

- as can enclose a sectangular garden, find the maximum area has can enclose.
 - b. Evaluate: $\lim_{x \to \theta} \frac{x \sin \theta \theta \sin x}{x \theta}$
 - 22. Evaluate:

a.
$$\int \frac{x}{2x^2 + 5} dx$$

b.
$$\int \cot^4 x \, dx$$

-The End-

Symbol No. 25016205 Prasadi Academy (+2) Examination Board (Under the Management of Prasadi Education Foundation) Lalitpur. F.M: 75 Class: XI Science 'B4' P.M.:30 Subject: Mathematics Time:3hrs Exam: Second Term Exam 2079 Candidates are required to give answers in their own words as far as practicable. Preference will be given to such answer than rote learning. The figures in the margin indicate full marks. Do not scatter your answers. Attempt all the questions. Group: A $[1 \times 1] = [1]$ Rewrite the correct option in your answer sheet : The inequality $-3 \le x \le 1$ expressed with absolute value sign is $-(a) |x-1| \le 3$ (b) $|x-1| \le 2$ (c) $|x+1| \le 2$ (d) $|x+1| \le 1$ 2. Log(ab) + log(a/b) =(a) 2 log b (b) 2 log a (c) $\log a - \log b$ (d) $\log a + \log b$ 3. The adjoint of a matrix $A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$ is (a) $\begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} -2 & -1 \\ 0 & 3 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 0 & -3 \end{pmatrix}$ (4.) The formula $S\infty = \frac{a}{1-r}$ holds when (a) r > 15. $\sqrt{-16}$. $\sqrt{-9}$ = (c) $-1 \le r \le 1$ (d) -1 < r < 1(b) -12 (c) 12i (a) 12 (b) -12 (c) 12i (d) -12i The angle between the two lines represented by $3x^2 - 8xy - 3y^2 = 0$ 0 is: 🖈 (a) $\pi/6$ (b) $\pi/3$ (c) $\pi/2$ (d) $2\pi/3$ The perpendicular distance between two lines 4x - 3y = 12 and 4x-3y = 2 is (a) 12/5 (b) 2/5 (c) 2 (d) 1 $8. \ \frac{d}{dx}(e^{\tan x}) =$ (a) etanx (b) $e^{\tan x} \sec^2 x$ (c) etan x sec x tan x (d) etan x /sec2 x

```
9. \lim_{x\to 2} \frac{\sin(x-2)}{x^2-4} =
(a) 0/0 (b) 1/2 (c) 1/4
The turning points of the curve f(x) = 1/3 x^3 - 4x^2 + 15x, are (d) 3, 5
              (a) \log (1 - \cos 2x) + c
                                                                (b)tan x +c
              (c) - \cot x + c
                                                               (d) cosec x. cot x + c
                                  Group : B
        12. (a) Construct the truth table for the compound statement:
                                                                          [5 \times 8 = 40]
            (b) If A, B, C are the subsets of a universal set U, prove that
                   (i) (A \cup B)' = A' \cap B' (ii) (A \cap B)' = A' \cup B'
                                                                                            [2]
                   If one G.M. 'G' and two A.M.s p and q are inserted
          between two numbers, prove that :G^2 = (2p - q)(2q - p)
                                                                                           [3]
         (b) If the equation x^2 + 2(k+2)x + 9k = 0 has equal roots, find k.
                                                                                          [3]
     14. (a) Show that :
                 \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3 [4]
                                                                                         [2]
       (b)Define symmetric matrix with an example.
   15. (a) If a - ib = \frac{1 - ix}{1 + ix}, show that a^2 + b^2 = 1.
                                                                                     [1]
         (b)Determine the square root of 12 - 5i.
                                                                                    [2]
   16. (a) A function f(x) defined as follows:
                                                                                    [3]
                       f(x) = \begin{cases} x^2 + 2 & for \ x < 5 \ < -20 & for \ x = 5 \\ 3x + 12 & for \ x > 5 \end{cases}
      Show that f(x) has a removable discontinuity at x = 5.
(h) Evaluate: \lim_{x\to 0} \frac{1-\cos px}{1-\cos qx}.
17. (a) Find dy/dx if x-y=\tan xy
                                                                                    [3]
                                                                                    [2]
                                                                                    [3]
     (b) Find the derivative of : \frac{x^2}{1-x^2}
                                                                                    [2]
```

18) Find two numbers whose sum is 10 and the sum winimum.	vhose squares
19. (a) Evaluate: $\int_0^1 \frac{dx}{1+x^2}$	[5]
J ₀ 1+ x ²	[2]
(b)Evaluate: $\int e^x \sin x \ dx$	[3]
Group: C 20.(a) Define one to one and onto function. Show that $f(x) = 2x - 3$, $x \in R$ is one to one onto function.	
to one onto function.	[4]
(b) Let $A = \{-1, 0, 2, 4\}$ and a function $f: A \to R$ $f(x) = \frac{x}{x+2}$. Find the range of f .	is defined by
x+2	[2]
(c) Let $A = [-3, 1]$ and $B = [-2, 4]$. Perform the op	erations :
(i)A U B (ii) A – B	[2]
21. (a) Evaluate: $\int cotx \ dx$	[2]
upon the straight line whose equations are	
$x \sec \theta + y \csc \theta = a \text{ and } x \cos \theta - y \sin \theta = a$ that $4p^2 + p^{-2} = a^2$.	cos 20, prove
$\mathbf{u} = \mathbf{u} + \mathbf{p} + \mathbf{p} - \mathbf{a}$	[4]
(c) Evaluate : $\lim_{x\to 2} \frac{x^2-4x+4}{x^2-7x+10}$	
(a) Find the court $x - 2 \frac{x^2 - 7x + 10}{x^2 - 7x + 10}$	[2]
Find the equation to the pair of lines joining the of intersection of the straight line $y = mx + c$ and the $x^2 + y^2 = a^2$. Prove that they are at right angles if $2c^2 = a^2(1 + m^2)$	rigin to the curve
$2c^2 = a^2(1 + m^2).$	[4]
(b) Find the derivative by definition of: √sec x	[4]

Class: XI Full Mark: 75 Subject: Mathematics (0081) Time: 3 Hours Candidates are required to give their answers in their own words as far as practicable. The figures in the margins indicate full marks. Group: A $[1 \times 11 = 11]$ Rewrite the correct options of each question in your answer sheet. 1. The statement $PV \sim p$ is a) Contradiction b) tautology ç) inverse d) converse 2. The graph of the function $y = ax^2 + bx + c$ for $a \ne 0$ is a) Pair of lines b) Circle c) Parabola d) Ellipse 3. The nature of the roots of the equation $x^2 + x + 1 = 0$ is a) rational b) imaginary c) real d) real and equal 4. The value of $Sin\left(tan^{-1}\frac{5}{12}\right)$ is a) $\frac{12}{13}$ 5. The perpendicular distance between two lines 4x - 3y = 12 and 4x - 3y = 2 is 6. The axes of coordinates divides the whole space into a) 2 parts b) 4 parts c) 6 parts d) 8 parts 7. If $\vec{a} = k\vec{b}$ then \vec{a} and \vec{b} are called a) non - collonear vectors b) collinear vectors d) Coplanar vectors c) non - coplanar 8. If a coin is tosses three times then the probability of getting at least one head is a) $\frac{1}{2}$ The one which is not an indeterminate form is a) $\frac{0}{0}$ b) $\infty + \infty$

10	. Th	e point of	finflection of	the curve of	tha fu	$nction f(x) = x^2$	-5r+6
	is	P 0.	initection of	the curve of	the ru	illustration (x) - x	<i>52</i> 1 0
	a)	5 2	b) 0 ,	c) –1	d) No	
11.	Th	e number	0.00			aken in Simpson's	1 rule is
	a)		b) 4		:) 6	d) 8	3
	,	_		R.	.) 0	u) o	
	The	equation	of motion wi		accele	eration is	
	a)	v = u +	at	b) $s = ut$	$+\frac{1}{a}at$	2	
	c)	$v^2 = u^2$	+ 2as	d)All of	the ab	ove	
	•	ST NORTH	. 245	d) All of		\	
		_	Group: B			$[8\times5=40]$	
12.				ents, then p	rove t	$nat \sim (p \lor q) \land q$	
		ntradictio			-	\	(3)
12	Th.	Prove th	at log(1 + 2 +	$-3) = \log 1$	+ log 2	1 + log 3	(2)
13.						re is inscribed by ne second square	
						re. If this process	
						e perimeters of a	
		ares?	1				(5)
14.			e domain of t				(1)
	b)	Show tha	it tan ⁻¹ $\left(\frac{3}{5}\right)$ +	$\sin^{-1}\left(\frac{3}{5}\right) =$	tan-1	$\left(\frac{27}{2}\right)$	(2)
	c)	When do	es a function	$f: A \to B$ be	comes	an onto and one	to one.
	سيه			Contract of the Contract of th	-		(2)
15.	Sho	w that th	e three vector	$rs 5\vec{a} + 6\vec{b}$	+ 7c,7	$\vec{a} - 8\vec{b} + 9\vec{c}$ and	
7	3ā	$+20\vec{b}+5$	c are coplan	ar where a,	\vec{b} , \vec{c} a	ny three vectors.	(5)
16.	<u>a)</u> \	What is th	e condition fo	or the curve	of free	uency distributio	n is
	syn	imetrical?	?				(1)
,	<i>b</i>	A frequer	ıcy distributi	on gives C.V	r = 5%	S_k , S.D. = 2 and S_k	
	••		mean and me			•	(2)
	9/				ents w	with $P(A) = \frac{2}{3}$ and	
	-11.55 	$P(B) = \frac{3}{\epsilon}$	find P(AUE	3).		類)	(2)
		10 10 3					10 400 464

17. a) Let
$$f(x) = \begin{cases} x^2 + 5 & for x < 5 \\ 3x + 15 & for x > 5 \end{cases}$$

i. Find $\lim_{x \to 5} f(x)$ (1)

ii. Find $f(5)$. (1)

iii. Find $f(5)$. (1)

iii. is $f(x)$ continuous at $x = 5$. (1)

b) Evaluate $\lim_{x \to \infty} (\sqrt{x} - \sqrt{x - 3})$ (2)

18. Find the area of a circle $x^2 + y^2 = 121$ using integration method. (5)

19. Evaluate using composite trapezoidal rule the integral $\int_0^1 \frac{dx}{1+x}$, $n = 5$.

Also find the error of approximation from its actual value. (4+1)

OR,

Two forces P and Q act at a point. Their resultant R is at right angles to P . Show that $Q^2 - P^2 = R^2$ where the angle between the forces is equal to $\cos^{-1}\left(-\frac{P}{q}\right)$. (5)

Group: C

[3 × 8 = 24]

20. a) If one root of the equation $x^2 - px + q = 0$ twice the other show that $2p^2 = 9q$. (2)

c) i) Define complex number. Why the complex numbers are introduced? explain with one example. (2)

ii) Find the square root of $3 - 4t$. (2)

c) Prove that
$$\begin{bmatrix} 1 & x & 2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{bmatrix} = (x - y)(y - z)(z - x)$$
 (2)

21. a) The length of the perpendicular drawn from the point (a,3) on the line $3x + 4y + 5 = 0$ is 4, find the value of a. (3)

b) Find the separate equations of the line. $x^2 - 5xy + 4y^2 = 0$. (2)

c) Find the point where the line though the points (1,2,3) and (4, -4,9) meet the yz plane. (3)

22. i) Write $\frac{dy}{dx}$ in terms of $\frac{dy}{dx}$ and $\frac{dt}{dx}$ (1)

iii) Find the $\frac{dy}{dx}$ in terms of $\frac{dy}{dx}$ and $t = \sqrt{x+1}$. (2)

iii) Write the necessary condition for the curve $y = f(x)$ to have maxima or minima. (2)

iii) Calculate the maximum and minimum values of $f(x) = 2x^3 - 3x^2 - 36x$. (3)

V.S. NIKETAN SECONDARY SCHOOL

[Under the management of V.S. Education Foundation]
Tinkune, Kathmandu, Nepal

Grade: - Science - XI

Tinkune, Kathmandu, Nepal	
FIRST TERM EXAMINATION	2081

FM.:75

Subject: Basic Maths	TT: -		19	314 -20
Powerts at	Time: - 3	hours		PM. :30
(Rewrite the correct option	n in your own	ı answer sh	eet.)	
Group	: "A" [11×	1 = 11		
1. Which of the following	g is a statemen	nt?		
 a) The fishes are beau 	tiful, b) Study mat	hematics.	
o) A is a capital of a c	ountry.	Water is es	sential fo	r health.
2. The number of proper	subsets of set	$A = \{a, b, c\}$. d) is	
a) 10 b) 16	c) 8	d) 12	W 51	
3. The inequality $2 \le x \le$	4 is same as			
a) $ x-2 \le 1$ b) $ x-2 \le 1$	$-3 \le 1$ c)	x - 2 < 1	-جدا (d	3 > 1
4. The point of intersect	ion of the per	rpendicular	bisector	of the
side of a triangle is cal	lled			
a) Circumcenter b) O	rthocenter c') Centroid	d) In-c	enter
5. The equation or straig	ht line passing	g through t	the point	(-5 -6)
a) 2x+y=4 b) 25	(ع y+4=0)	x-2y=4	d) None o	f these
31(1/) 1-1 11 D11-11	1 (3 1) -14	7 71 /7 11		(-2 1)
. The equation x . kj . 4	xy=0 represen	its two coin	cident li	nce if i-
				,-3, 11 K
a) 0 b) 1	4	d) 16		
a) 0 b) 1 8. In the relation $\lim_{x\to 0} \frac{3}{x}$	$\frac{\sin x}{x} = 1$, x is n	casured in		
o) degree bifadis	n c)		and the second second second	
9. For what value of k, the $(kx + 1, if x \le x)$	e following fu	action :	all of abo	ive
$(kx+1.if x \le$	π)	iction is co	ntinuous	at x=π.
$F(x) = \begin{cases} kx + 1, & \text{if } x \le \\ \cos x, & \text{if } x > \pi \end{cases}$ a) b) \pi c) 0. If $\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108$,	. }			
-\ 1	2 4 2			
a) 1 0) h c)	π 0)			
0. If $\lim_{x\to 3} \frac{x^n-3^n}{x} = 108$,	then value of	n=?		
a) 3 b) 5	c) 4		. 19	
a) 3 b) 5 1. $\lim_{x\to\infty} \frac{(3x+2)^6(2x-5)^4}{(2x+5)^{10}}$ is		d) 6	5	
1. $\lim_{x\to\infty} \frac{(2x+5)^{10}}{(2x+5)^{10}}$ is	equal to	1		
()	1			
	9.			

- Group: "B" $[8 \times 5 = 40]$
- 12. a) Define the term tautology and contradiction in logic. Obtain the truth value of the compound statement $\sim p \land (p \lor q) \Rightarrow q$.
 - b) Prove conditional statement and its contra positive are logically equivalent using the truth table.
- 13. a) If A and B are the subsets of the universal set U, prove that: $(A \cap B)' = A' \cup B'$ [2]
 - h) Define difference and symmetric difference of two sets. If A, B, C are subset of universal set U, then prove that: $A - (B \cup C) =$ $(A-B) \cap (A-C)$. [3]
- a) Rewrite the following relation using absolute value sign.: $\frac{5}{3} \le x \le 3$ [2]
 - b) Define absolute value of real number and solve.: $|2x + 1| \ge 3$ and draw the graph. [3]
 - 15. a) Give two straight lines, 3x-4y+3=0 and 12x-5y-1=0,
 - i) Are the lines intersecting? [1]ii) Find the equations of the bisector of the angle between
 - the straight lines.
 - iii) Show that the bisectors subtended each other at right [1]
 - iv) Identify the bisector of the acute angle. [1] 16. a) What are the three standard forms of equation of a straight line?
 - Let P denote the length of perpendicular drawn from origin: (0, 0) upon a line $\frac{x}{a} + \frac{y}{b} = 1$ then prove that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$ [3]
 - Find the angle between the straight lines represented by the equation: x2+6xy+9y2+4x+12y-5=0.
 - 17. Define continuity and discontinuity of a function. A function f(x) is defined as follows:

$$f(x) = \begin{cases} 3 + 2x & for - \frac{3}{2} \le x < 0 \\ 3 - 2x & for 0 \le x < \frac{3}{2} \\ -3 - 2x & for x \ge \frac{3}{2} \end{cases}$$

Show that f(x) is continuous at x=0 and discontinuous at $x=\frac{3}{2}$

TO Free leaster		
18/Evaluate:		
a) $\lim_{y\to x} \frac{\sec y - \sec x}{y-x}$ b) $\lim_{x\to \frac{\pi}{6}} \frac{1-\tan x}{\frac{\pi}{6}-x}$	ſ	11
h) lim 1-tan x	[2	1
$y = \frac{1}{x} + \frac{\pi}{2} - \frac{\pi}{2}$	[3	1
10 r ² -75	10	ı
19. a) Consider a function $f(x) = \frac{x^2 - 25}{x - 5}$. Discuss discontinuity at $x = 5$. In it possible $x = 5$.	is the type	·c
discontinuity at $x = 5$. Is it possible to make $f(x)$ co	ntinuo	"
specified point? Why?		
$(x^2 - 1 \text{ for } x < 3)$	[1+2]	J
b) A function $f(x_{-} = \begin{cases} x^2 - 1 \text{ for } x < 3 \\ 2kx \text{ for } x \ge 3 \end{cases}$ find the	value of k as	
that $f(x)$ is continuous at $x = 3$.	- N 50	,
and they is continuous at x = 3.	[2]	
C		
Group: "C" $[3 \times 8 = 24]$		
20. a) If $U = (-\infty, \infty) = R$, then $A = [-2, 4)$ and $B = (2, 4)$. 51 compute	
$A \cup B$, $A \cap B$, $A - B$, $B - A$, and A' .		
b) Solve: $x^2 - 2x - 3 > 0$	[5]	
21 0) 15	[3]	
21. a) If a given that P ₁ and P ₂ are the length of the parameter of the points of (Cos & Sin a)		
drawn from the points of $(\cos \theta, \sin \theta)$ and $(-\sin \theta)$ on the line $\csc \theta + y \csc \theta = 0$, respectively	perpendicular	
on the line $x \sec \theta + y \csc \theta = 0$, respectively, pro	cθ, cosec θ)	
$\frac{4}{p_1^2} - p_2^2 = 4$ 7 tespectively, pro	ve that:	
69 Find the equation a	[5]	
Find the equation of the two straight lines represent the equation $2x^2 + 3xy + y^2 + 5x + 2y - 3 = 0$.	ented by the	
$x + 5xy + y^2 + 5x + 2y - 3 = 0$.	f21	
(22. h) Evaluate t	[2]	
(22. a) Evaluate: $\lim_{x\to\infty} (\sqrt{x} - \sqrt{x-4})$ b) Define limit of a f		
mint of a function and	[2]	
lim _{x→θ} xcosec θ - θ cosec x		
C) Evaluates line VI+6 - 5	[4]	
$\lim_{x \to \theta} \frac{x \cos c \theta - \theta \cos c x}{x - \theta}$ Evaluate: $\lim_{x \to a} \frac{\sqrt{x + a} - \sqrt{3x - a}}{x - a}$	(01	
	[2]	

THE END

Subject Code: 0071

Grade: XI 2081 (2024) Mathematics

Time: 3 hrs.

Full Marks: 75

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all the questions.

Group 'A'

 $[11 \times 1 = 11]$

Rewrite the correct option in your answer sheet.

- 1. Which of the following is a statement.
 - i. Mathematics is a beautiful language.
 - Limit value of any function f(x) exists when left hand limit and right hand limit of function are equal.
 - iii. What is derivative?
 - No. Algebra, Trigonometry, Analytic Geometry, Vectors, Statistics and probability, calculus, computational methods or mechanics.
- 2. Domain of $f(x) = \sqrt{3-x} + \sqrt{x+1}$ is,
 - i. x≤3

ii. x ≥ – 1

iii. -1≤x≤3

iv. $x \le -1$, $x \ge 3$

3. $\tan^{-1}\sqrt{3} + \tan^{-1}\sqrt{3} =$

i. $\frac{-\pi}{3}$

ii.

iii. $\frac{4\pi}{3}$

iv. $\frac{2\pi}{3}$

4. The distance between the parallel lines 3x - 4y + 7 = 0 and 3x - 4y + 5 = 0 is:

i. 3/7 iii. 7/5 iv. 3/5

i. 2/5 ii. 3/7 iii. 7/3 ii

5. Three vectors $\vec{i} + 2\vec{j}$ $3\vec{i} + 4\vec{j} + 6\vec{k}$ are,

i. Linearly independent

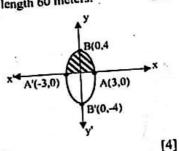
ii. Coplanar

iii. Linearly dependent

iv. Collinear

	Com
6.	If A and B are two independent events then $P(A \cap B) = P(B)$
	i. $P(A) + P(B)$ ii. $\frac{P(A)}{P(B)}$ iii. $P(A) \cdot P(B)$ iv. $\frac{P(B)}{P(A)}$
7.	$\lim_{X\to 0} \frac{\sin x}{x} =$
	i. $\frac{0}{0}$ ii. 0 iii. 1 iv. does not exist
8.	If $y = \tan\left(\frac{2x}{3}\right)$, then $\frac{dy}{dx}$ at $x = 0$ is
	i. $\sec^2\left(\frac{2x}{3}\right)$ ii. $\frac{2}{3}\sec^2\left(\frac{2x}{3}\right)$
^	iii. 0 iv. $\frac{2}{3}$
9.	The sum of two numbers is 8. Then the two numbers whose sum of the squares is minimum are
	1. 1, / 11. 2, 6 iii. 4.4 iv. 3.5
10.	The area bounded by the curve $y = 4x$ $x = axis and x = 1 y = 2$
	" 2 " ii. 0 iii. 2 iv. 4
11.	The number of negative root of the equation $x^3 + x - 4 = 0$ is
	i. 1 ii. 3 iii. 0 iv. 4
	A car moving distance $x = 10 + 4t + t^3$ in time t, then the
	acceleration at the end of $t = 4$ sec is,
	i. 12m/s^2 ii 16 m/s^2 iii. 24 m/s^2 iv. 24m/s^2
	Group 'B' $. 18 \times 5 = 401$
12.	Given a quadratic equation $ax^2 + bx + c = 0$, answer the
	following questions:
	a) What is the condition for 'a'?
	b) What are the two roots of the given quadratic equation?
	[1]
	c) Write the relation between coefficients a, b, c and roots of
	given equation. [1]

-


d) Under what condition will this quadratic equation has imaginary roots. (1)e) Write the condition having one root reciprocal of the other root. Give A = [-3, 1] and B = [-2, 4] find A - B drawing graph.

b) If A be the A.M and the H.M between two quantities 'a' and 'b', show that, [2] $\frac{a-A}{a-H}$ $\frac{b-A}{b-H} = \frac{A}{H}$ c) Find the cofactor marix of the matrix, [2] $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ 14. a) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, show that x + y + z = xyz.[3] b) Solve secx. $tanx = \sqrt{2}$ [2] 15. a) Show that the following vectors are coplanar: [3] $\vec{p} = \vec{a} + 2\vec{b} + 3\vec{c}$, $\vec{q} = \vec{n} \cdot 2\vec{a} + 3\vec{b} - 3\vec{c}$, $\vec{r} = -\vec{b} + 2\vec{c}$ b) If 3i + j - k and $\lambda i - 4j + 4k$ collinear vectors, find the value of a 16.a) Calculate the skewness based on mean, mode and standard deviation for the given informations: $\sum fx = 110$, $\sum fx^2 = 1650$, N = 10, and $m_0 = 12.45$. b) The chance that A can solve a certain problem is $\frac{1}{4}$. The chance that B can solve it is $\frac{2}{3}$. Find the chance that the problem will be solved if they both try. [2] Evaluate $\lim_{x \to 0} \frac{1-\cos x}{x^2}$ [2] b) A function f(x) is defined as follows: [3] $f(x) = \begin{cases} x^2 + 2 & for & x < 5 \\ 20 & for & x = 5 \\ 3x + 12 & for & x > 5 \end{cases}$

Show the f(x) has removable discontinuity at x=5. Hence redefine it to make continuous,

Find, from definition the	-
Find, from definition the derivative of $\frac{1}{\sqrt{5x-2}}$	[3]
b) Evaluate $\int_{1}^{1} \frac{1}{x+2} dx$	[2]
19. a) Using simpson's $\frac{1}{3}$ rule, evaluate $\int_{1}^{5} x^{4} dx$ with 4 sub-interval.	als.
b) Using Newton's iteration method find the square root correct to 3 places of decimals.	[2]
correct to 3 places of decimals.	of 3
by why we can't use hisection mathed and	[2]
though the equation $x^2=0$ has a root $x=0$.	
- OB	[1]
a) PQRSTU is a regular hexagon forces of magnitud $4\sqrt{3}$, 8, $2\sqrt{3}$, and 4 newtons get at P.	0.2
	and
direction of their resultant.	[3]
b) A particles slides down a smooth plane inclined at any 30° to the horizon. Find its velocity and	le of
30° to the horizon. Find its velocity when it reache	s the
ground if the length of the plane is40m (g=10ms ⁻²).	[2]
Communitari	
20. a) A function $f(x) = x^2 - 1$ is given.	= 241
· me the domain of I(x).	[1]
ii. Find the range of f(x).	[1]
iii. Check for odd or even nature or symmetry of f(x).	[1]
the vertex and minimum value and a	
Sketch the graph of it using above chornel	. [1]
", " " " " " " " " " " " " " " " " " "	[1]
i. Represent z and \bar{z} in graph.	
ii. Find \sqrt{z} .	[1]
	(2]
* 17 FEEEE	

- 21 a) Find the maximum area of a rectangular plot of land which can be enclosed by a rope of length 60 meters. [4]
 - b) The figure alongside cuts
 the axes of x and y at A(3,
 0) and A'(-3, 0), B(0, 4),
 B'(0, -4) respectively. It
 is symmetrical about
 both axes. find the area of
 the shaded region
 showing all necessary
 working by using integration.

- 22. a) If the direction cosine of a line are proportional to 1,-3,2 then find the direction cosines of the line. [2]
 - b) The equations of the two straight lines are 3x-y=5 and 6x+2y+15=0 find the equation of bisector of the angle that contains origin.
 - e) Prove that $2x^2+7xy+3y^2-4x-7y+2=0$ represents two straight [2]
 - d) If the pair of lines x²-2pxy-y²=0 and x²-2qxy-y²=0 be such that each pair bisects the angle between the other pair, prove that pq=-1 [2]

THE END

HISSAN EXAMINATION BOARD-2079

Gandaki Province

Time: 3 hrs.

COM MATHEMATICS **GRADE-XI**

Full Marks: 75

Sub. Code: 0071

Candidates are required to give their answers in their own words as far as practicable.

Attempt ALL Questions.

Set A Group A

Rewrite the correct option in your answer sheet.

[11x1=11]

- 1. A A B is equal to
 - a) (A-B) (B-A)

b) (A-B) U (B-A)

c) A n (B-A)

d) B U (B-A)

- 2. i15 x i13 is equal to
 - a) -1
- b) 1
- c)i
- d) i
- 3. In any $\triangle ABC$, a=3, b=5 and c=6. What is the value of $\cos \frac{A}{2}$?
 - a) $\frac{1}{\sqrt{15}}$
- b) $\sqrt{\frac{14}{15}}$ c) $\frac{1}{\sqrt{14}}$ d) $2\sqrt{14}$

- 4. If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ then
 - a) a//b

- b) $\overrightarrow{a} \perp \overrightarrow{b}$ c) $\overrightarrow{a} = \overrightarrow{b}$ d) $\overrightarrow{a} = k\overrightarrow{b}$
- 5. What is the focus of the parabola whose equation is $x^2 = -4ay$?
 - a) (a, o)
- b) (-a, o)
- c) (0, a)d) (0, -a)
- 6. A bag contains 8 red and 5 white balls. There balls are drawn at random. Find the probability that all three balls are of same colour.
 - a) $\frac{2}{12}$
- b) $\frac{28}{143}$ c) $\frac{40}{143}$
- 7. Which of the following is incorrect?
 - a) $\lim_{x \to 0} \frac{a^{x-1}}{x} = \log a$
- b) $\lim_{x \to a} \frac{x^{n-a^n}}{x-a} = na^{n-1}$

- c) $\lim_{x \to 0} \frac{e^{x}-1}{x} = 1$ d) $\lim_{x \to 0} \frac{a^{x}-b^{x}}{x} = \log \frac{b}{a}$

31/5-2		the equilib				function i
	a) 20	and supply b) 30		c) 350		d) 450
	7. 41	5,50		, 550	197	4) 150
			Group B [3x5=40]		
12. a	$)$ If $-6 \le 3$	$x+3\leq 12, p$	prove that -	$-3 \le x \le 3$.		(2)
b) Define	bijective f	unction. D	etermine	if the giv	en function
	$f(x) = x^3$	+ 2x is even,	odd or neit	her even no	or odd.	(3)
	numbers.	he sum to	-			(2) 4 ² a ³ +
		0		-	- 35	(3)
14. a)If R be the	e circum-radi	ius of $\triangle ABC$			(2)
15.	Define	torically the a Bowley's (Coefficient of	Coefficient	of Skow	onals of a ci	des v.a
	Class	300-400	400-500	500-600	600 700	700-800
1	f	5	10	10-	2	700-800
		x ² + 2xy + rea bounded	Charles Addition	163	lax and its (
and program		STATE OF STATE OF	THE REAL PROPERTY.	STATE OF STREET	Distriction	

8. In which of the following intervals is the function

b₁ $\left(\frac{1}{2}, \infty\right)$

b) Efficiency

2km/hr2, what will be the final velocity in 6 hours?

b) 72 km/hr

c) $(-1, \frac{1}{3})$ d) $(-\infty, \frac{1}{3})$

c) 0 km/hr d) 58 km/hr

d) Truncatating

b) $\cos x + \sin x + c$

10. Which of the following is not the characteristics of numerical

11. A bus is moving at a speed of 60 km/hr. If it decelerates

OR

d) $\cos x - x \sin x + c$

c) Stability

 $f(x)=x^3+x^2-x-1$ decreasing?

a) $(-\infty, -1)$ b) 9. $\int x \cos x \, dx$ gives a) $x \sin x + \cos x + C$

c) x Cosx + Sinx + C

computing?

a) Accuracy

a) 48 km/hr

- 18. Use the bisection method to find the solution of $x^3 x 1 = 0$ in the interval (1,2) correct to three places of decimals.
- 19. A particle falls freely from the top of the tower and during the last 2 seconds, it falls through $\frac{3}{4}$ th of the height of the tower. Find the height of the tower.

OR

A firm has a demand function P=108-5Q and cost function $C=-12Q+Q^2$. Find the marginal cost, marginal revenue, maximum profit and the price at which the profit is maximum.

Group C [3x8=24]

20, a) Prove that

$$\begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix} = 2(a+b)(b+c)(c+a)$$
(4)

- b) For any complex number Z, prove that $\frac{1}{2}(z+\bar{z})$ = Real z. (2)
- c) Show that $(p \land q) \land \sim (p \lor q)$ is a contradiction. (2)
- 21. a) Find the equation of the bisector of obtuse angle formed by the lines 12x 5y + 7 = 0 and 4x 3y + 1 = 0, (3)
 - b) Show that the equation $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$ represents a pair of straight lines. (3)
 - of Find the equation of tangent to the circle $x^2 + y^2 2x = 10y + 1 = 0$ at (-3, 2) (2)

b) For what value of K is the following function continuous at x=1?

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & , & x \neq 1 \\ k & , & x = 1 \end{cases}$$
 (2)

c) Find from the first principle the derivatives of secx. (4)

The End

fil

ect it 20 3 fi